h264_direct.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... direct mb/block decoding
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
28 #include "internal.h"
29 #include "dsputil.h"
30 #include "avcodec.h"
31 #include "mpegvideo.h"
32 #include "h264.h"
33 #include "rectangle.h"
34 #include "thread.h"
35 
36 //#undef NDEBUG
37 #include <assert.h>
38 
39 
40 static int get_scale_factor(H264Context * const h, int poc, int poc1, int i){
41  int poc0 = h->ref_list[0][i].poc;
42  int td = av_clip(poc1 - poc0, -128, 127);
43  if(td == 0 || h->ref_list[0][i].long_ref){
44  return 256;
45  }else{
46  int tb = av_clip(poc - poc0, -128, 127);
47  int tx = (16384 + (FFABS(td) >> 1)) / td;
48  return av_clip((tb*tx + 32) >> 6, -1024, 1023);
49  }
50 }
51 
53  const int poc = h->cur_pic_ptr->field_poc[h->picture_structure == PICT_BOTTOM_FIELD];
54  const int poc1 = h->ref_list[1][0].poc;
55  int i, field;
56 
57  if (FRAME_MBAFF)
58  for (field = 0; field < 2; field++){
59  const int poc = h->cur_pic_ptr->field_poc[field];
60  const int poc1 = h->ref_list[1][0].field_poc[field];
61  for (i = 0; i < 2 * h->ref_count[0]; i++)
62  h->dist_scale_factor_field[field][i^field] =
63  get_scale_factor(h, poc, poc1, i+16);
64  }
65 
66  for (i = 0; i < h->ref_count[0]; i++){
67  h->dist_scale_factor[i] = get_scale_factor(h, poc, poc1, i);
68  }
69 }
70 
71 static void fill_colmap(H264Context *h, int map[2][16+32], int list, int field, int colfield, int mbafi){
72  Picture * const ref1 = &h->ref_list[1][0];
73  int j, old_ref, rfield;
74  int start= mbafi ? 16 : 0;
75  int end = mbafi ? 16+2*h->ref_count[0] : h->ref_count[0];
76  int interl= mbafi || h->picture_structure != PICT_FRAME;
77 
78  /* bogus; fills in for missing frames */
79  memset(map[list], 0, sizeof(map[list]));
80 
81  for(rfield=0; rfield<2; rfield++){
82  for(old_ref=0; old_ref<ref1->ref_count[colfield][list]; old_ref++){
83  int poc = ref1->ref_poc[colfield][list][old_ref];
84 
85  if (!interl)
86  poc |= 3;
87  else if( interl && (poc&3) == 3) // FIXME: store all MBAFF references so this is not needed
88  poc= (poc&~3) + rfield + 1;
89 
90  for(j=start; j<end; j++){
91  if (4 * h->ref_list[0][j].frame_num + (h->ref_list[0][j].f.reference & 3) == poc) {
92  int cur_ref= mbafi ? (j-16)^field : j;
93  if (ref1->mbaff)
94  map[list][2 * old_ref + (rfield^field) + 16] = cur_ref;
95  if(rfield == field || !interl)
96  map[list][old_ref] = cur_ref;
97  break;
98  }
99  }
100  }
101  }
102 }
103 
105  Picture * const ref1 = &h->ref_list[1][0];
106  Picture * const cur = h->cur_pic_ptr;
107  int list, j, field;
108  int sidx= (h->picture_structure&1)^1;
109  int ref1sidx = (ref1->f.reference&1)^1;
110 
111  for(list=0; list<2; list++){
112  cur->ref_count[sidx][list] = h->ref_count[list];
113  for(j=0; j<h->ref_count[list]; j++)
114  cur->ref_poc[sidx][list][j] = 4 * h->ref_list[list][j].frame_num + (h->ref_list[list][j].f.reference & 3);
115  }
116 
117  if(h->picture_structure == PICT_FRAME){
118  memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0]));
119  memcpy(cur->ref_poc [1], cur->ref_poc [0], sizeof(cur->ref_poc [0]));
120  }
121 
122  cur->mbaff= FRAME_MBAFF;
123 
124  h->col_fieldoff= 0;
125  if(h->picture_structure == PICT_FRAME){
126  int cur_poc = h->cur_pic_ptr->poc;
127  int *col_poc = h->ref_list[1]->field_poc;
128  h->col_parity= (FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc));
129  ref1sidx=sidx= h->col_parity;
130  } else if (!(h->picture_structure & h->ref_list[1][0].f.reference) && !h->ref_list[1][0].mbaff) { // FL -> FL & differ parity
131  h->col_fieldoff = 2 * h->ref_list[1][0].f.reference - 3;
132  }
133 
135  return;
136 
137  for(list=0; list<2; list++){
138  fill_colmap(h, h->map_col_to_list0, list, sidx, ref1sidx, 0);
139  if(FRAME_MBAFF)
140  for(field=0; field<2; field++)
141  fill_colmap(h, h->map_col_to_list0_field[field], list, field, field, 1);
142  }
143 }
144 
145 static void await_reference_mb_row(H264Context * const h, Picture *ref, int mb_y)
146 {
147  int ref_field = ref->f.reference - 1;
148  int ref_field_picture = ref->field_picture;
149  int ref_height = 16*h->mb_height >> ref_field_picture;
150 
152  return;
153 
154  //FIXME it can be safe to access mb stuff
155  //even if pixels aren't deblocked yet
156 
158  FFMIN(16 * mb_y >> ref_field_picture, ref_height - 1),
159  ref_field_picture && ref_field);
160 }
161 
162 static void pred_spatial_direct_motion(H264Context * const h, int *mb_type){
163  int b8_stride = 2;
164  int b4_stride = h->b_stride;
165  int mb_xy = h->mb_xy, mb_y = h->mb_y;
166  int mb_type_col[2];
167  const int16_t (*l1mv0)[2], (*l1mv1)[2];
168  const int8_t *l1ref0, *l1ref1;
169  const int is_b8x8 = IS_8X8(*mb_type);
170  unsigned int sub_mb_type= MB_TYPE_L0L1;
171  int i8, i4;
172  int ref[2];
173  int mv[2];
174  int list;
175 
176  assert(h->ref_list[1][0].f.reference & 3);
177 
178  await_reference_mb_row(h, &h->ref_list[1][0], h->mb_y + !!IS_INTERLACED(*mb_type));
179 
180 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
181 
182 
183  /* ref = min(neighbors) */
184  for(list=0; list<2; list++){
185  int left_ref = h->ref_cache[list][scan8[0] - 1];
186  int top_ref = h->ref_cache[list][scan8[0] - 8];
187  int refc = h->ref_cache[list][scan8[0] - 8 + 4];
188  const int16_t *C= h->mv_cache[list][ scan8[0] - 8 + 4];
189  if(refc == PART_NOT_AVAILABLE){
190  refc = h->ref_cache[list][scan8[0] - 8 - 1];
191  C = h-> mv_cache[list][scan8[0] - 8 - 1];
192  }
193  ref[list] = FFMIN3((unsigned)left_ref, (unsigned)top_ref, (unsigned)refc);
194  if(ref[list] >= 0){
195  //this is just pred_motion() but with the cases removed that cannot happen for direct blocks
196  const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
197  const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
198 
199  int match_count= (left_ref==ref[list]) + (top_ref==ref[list]) + (refc==ref[list]);
200  if(match_count > 1){ //most common
201  mv[list]= pack16to32(mid_pred(A[0], B[0], C[0]),
202  mid_pred(A[1], B[1], C[1]) );
203  }else {
204  assert(match_count==1);
205  if(left_ref==ref[list]){
206  mv[list]= AV_RN32A(A);
207  }else if(top_ref==ref[list]){
208  mv[list]= AV_RN32A(B);
209  }else{
210  mv[list]= AV_RN32A(C);
211  }
212  }
213  }else{
214  int mask= ~(MB_TYPE_L0 << (2*list));
215  mv[list] = 0;
216  ref[list] = -1;
217  if(!is_b8x8)
218  *mb_type &= mask;
219  sub_mb_type &= mask;
220  }
221  }
222  if(ref[0] < 0 && ref[1] < 0){
223  ref[0] = ref[1] = 0;
224  if(!is_b8x8)
225  *mb_type |= MB_TYPE_L0L1;
226  sub_mb_type |= MB_TYPE_L0L1;
227  }
228 
229  if(!(is_b8x8|mv[0]|mv[1])){
230  fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
231  fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
232  fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
233  fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
235  return;
236  }
237 
238  if (IS_INTERLACED(h->ref_list[1][0].f.mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL
239  if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL
240  mb_y = (h->mb_y&~1) + h->col_parity;
241  mb_xy= h->mb_x + ((h->mb_y&~1) + h->col_parity)*h->mb_stride;
242  b8_stride = 0;
243  }else{
244  mb_y += h->col_fieldoff;
245  mb_xy += h->mb_stride*h->col_fieldoff; // non zero for FL -> FL & differ parity
246  }
247  goto single_col;
248  }else{ // AFL/AFR/FR/FL -> AFR/FR
249  if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
250  mb_y = h->mb_y&~1;
251  mb_xy= h->mb_x + (h->mb_y&~1)*h->mb_stride;
252  mb_type_col[0] = h->ref_list[1][0].f.mb_type[mb_xy];
253  mb_type_col[1] = h->ref_list[1][0].f.mb_type[mb_xy + h->mb_stride];
254  b8_stride = 2+4*h->mb_stride;
255  b4_stride *= 6;
256  if (IS_INTERLACED(mb_type_col[0]) != IS_INTERLACED(mb_type_col[1])) {
257  mb_type_col[0] &= ~MB_TYPE_INTERLACED;
258  mb_type_col[1] &= ~MB_TYPE_INTERLACED;
259  }
260 
261  sub_mb_type |= MB_TYPE_16x16|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
262  if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
263  && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
264  && !is_b8x8){
265  *mb_type |= MB_TYPE_16x8 |MB_TYPE_DIRECT2; /* B_16x8 */
266  }else{
267  *mb_type |= MB_TYPE_8x8;
268  }
269  }else{ // AFR/FR -> AFR/FR
270 single_col:
271  mb_type_col[0] =
272  mb_type_col[1] = h->ref_list[1][0].f.mb_type[mb_xy];
273 
274  sub_mb_type |= MB_TYPE_16x16|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
275  if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
276  *mb_type |= MB_TYPE_16x16|MB_TYPE_DIRECT2; /* B_16x16 */
277  }else if(!is_b8x8 && (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16))){
278  *mb_type |= MB_TYPE_DIRECT2 | (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16));
279  }else{
281  /* FIXME save sub mb types from previous frames (or derive from MVs)
282  * so we know exactly what block size to use */
283  sub_mb_type += (MB_TYPE_8x8-MB_TYPE_16x16); /* B_SUB_4x4 */
284  }
285  *mb_type |= MB_TYPE_8x8;
286  }
287  }
288  }
289 
290  await_reference_mb_row(h, &h->ref_list[1][0], mb_y);
291 
292  l1mv0 = &h->ref_list[1][0].f.motion_val[0][h->mb2b_xy [mb_xy]];
293  l1mv1 = &h->ref_list[1][0].f.motion_val[1][h->mb2b_xy [mb_xy]];
294  l1ref0 = &h->ref_list[1][0].f.ref_index [0][4 * mb_xy];
295  l1ref1 = &h->ref_list[1][0].f.ref_index [1][4 * mb_xy];
296  if(!b8_stride){
297  if(h->mb_y&1){
298  l1ref0 += 2;
299  l1ref1 += 2;
300  l1mv0 += 2*b4_stride;
301  l1mv1 += 2*b4_stride;
302  }
303  }
304 
305 
306  if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
307  int n=0;
308  for(i8=0; i8<4; i8++){
309  int x8 = i8&1;
310  int y8 = i8>>1;
311  int xy8 = x8+y8*b8_stride;
312  int xy4 = 3*x8+y8*b4_stride;
313  int a,b;
314 
315  if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
316  continue;
317  h->sub_mb_type[i8] = sub_mb_type;
318 
319  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
320  fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
321  if(!IS_INTRA(mb_type_col[y8]) && !h->ref_list[1][0].long_ref
322  && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
323  || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
324  a=b=0;
325  if(ref[0] > 0)
326  a= mv[0];
327  if(ref[1] > 0)
328  b= mv[1];
329  n++;
330  }else{
331  a= mv[0];
332  b= mv[1];
333  }
334  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
335  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
336  }
337  if(!is_b8x8 && !(n&3))
339  }else if(IS_16X16(*mb_type)){
340  int a,b;
341 
342  fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
343  fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
344  if(!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref
345  && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
346  || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
347  && h->x264_build>33U))){
348  a=b=0;
349  if(ref[0] > 0)
350  a= mv[0];
351  if(ref[1] > 0)
352  b= mv[1];
353  }else{
354  a= mv[0];
355  b= mv[1];
356  }
357  fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
358  fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
359  }else{
360  int n=0;
361  for(i8=0; i8<4; i8++){
362  const int x8 = i8&1;
363  const int y8 = i8>>1;
364 
365  if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
366  continue;
367  h->sub_mb_type[i8] = sub_mb_type;
368 
369  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, mv[0], 4);
370  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, mv[1], 4);
371  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
372  fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
373 
374  assert(b8_stride==2);
375  /* col_zero_flag */
376  if(!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref && ( l1ref0[i8] == 0
377  || (l1ref0[i8] < 0 && l1ref1[i8] == 0
378  && h->x264_build>33U))){
379  const int16_t (*l1mv)[2]= l1ref0[i8] == 0 ? l1mv0 : l1mv1;
380  if(IS_SUB_8X8(sub_mb_type)){
381  const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
382  if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
383  if(ref[0] == 0)
384  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
385  if(ref[1] == 0)
386  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
387  n+=4;
388  }
389  }else{
390  int m=0;
391  for(i4=0; i4<4; i4++){
392  const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
393  if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
394  if(ref[0] == 0)
395  AV_ZERO32(h->mv_cache[0][scan8[i8*4+i4]]);
396  if(ref[1] == 0)
397  AV_ZERO32(h->mv_cache[1][scan8[i8*4+i4]]);
398  m++;
399  }
400  }
401  if(!(m&3))
403  n+=m;
404  }
405  }
406  }
407  if(!is_b8x8 && !(n&15))
409  }
410 }
411 
412 static void pred_temp_direct_motion(H264Context * const h, int *mb_type){
413  int b8_stride = 2;
414  int b4_stride = h->b_stride;
415  int mb_xy = h->mb_xy, mb_y = h->mb_y;
416  int mb_type_col[2];
417  const int16_t (*l1mv0)[2], (*l1mv1)[2];
418  const int8_t *l1ref0, *l1ref1;
419  const int is_b8x8 = IS_8X8(*mb_type);
420  unsigned int sub_mb_type;
421  int i8, i4;
422 
423  assert(h->ref_list[1][0].f.reference & 3);
424 
425  await_reference_mb_row(h, &h->ref_list[1][0], h->mb_y + !!IS_INTERLACED(*mb_type));
426 
427  if (IS_INTERLACED(h->ref_list[1][0].f.mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL
428  if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL
429  mb_y = (h->mb_y&~1) + h->col_parity;
430  mb_xy= h->mb_x + ((h->mb_y&~1) + h->col_parity)*h->mb_stride;
431  b8_stride = 0;
432  }else{
433  mb_y += h->col_fieldoff;
434  mb_xy += h->mb_stride*h->col_fieldoff; // non zero for FL -> FL & differ parity
435  }
436  goto single_col;
437  }else{ // AFL/AFR/FR/FL -> AFR/FR
438  if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
439  mb_y = h->mb_y&~1;
440  mb_xy= h->mb_x + (h->mb_y&~1)*h->mb_stride;
441  mb_type_col[0] = h->ref_list[1][0].f.mb_type[mb_xy];
442  mb_type_col[1] = h->ref_list[1][0].f.mb_type[mb_xy + h->mb_stride];
443  b8_stride = 2+4*h->mb_stride;
444  b4_stride *= 6;
445  if (IS_INTERLACED(mb_type_col[0]) != IS_INTERLACED(mb_type_col[1])) {
446  mb_type_col[0] &= ~MB_TYPE_INTERLACED;
447  mb_type_col[1] &= ~MB_TYPE_INTERLACED;
448  }
449 
450  sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
451 
452  if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
453  && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
454  && !is_b8x8){
455  *mb_type |= MB_TYPE_16x8 |MB_TYPE_L0L1|MB_TYPE_DIRECT2; /* B_16x8 */
456  }else{
457  *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
458  }
459  }else{ // AFR/FR -> AFR/FR
460 single_col:
461  mb_type_col[0] =
462  mb_type_col[1] = h->ref_list[1][0].f.mb_type[mb_xy];
463 
464  sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
465  if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
466  *mb_type |= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
467  }else if(!is_b8x8 && (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16))){
468  *mb_type |= MB_TYPE_L0L1|MB_TYPE_DIRECT2 | (mb_type_col[0] & (MB_TYPE_16x8|MB_TYPE_8x16));
469  }else{
471  /* FIXME save sub mb types from previous frames (or derive from MVs)
472  * so we know exactly what block size to use */
473  sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
474  }
475  *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
476  }
477  }
478  }
479 
480  await_reference_mb_row(h, &h->ref_list[1][0], mb_y);
481 
482  l1mv0 = &h->ref_list[1][0].f.motion_val[0][h->mb2b_xy [mb_xy]];
483  l1mv1 = &h->ref_list[1][0].f.motion_val[1][h->mb2b_xy [mb_xy]];
484  l1ref0 = &h->ref_list[1][0].f.ref_index [0][4 * mb_xy];
485  l1ref1 = &h->ref_list[1][0].f.ref_index [1][4 * mb_xy];
486  if(!b8_stride){
487  if(h->mb_y&1){
488  l1ref0 += 2;
489  l1ref1 += 2;
490  l1mv0 += 2*b4_stride;
491  l1mv1 += 2*b4_stride;
492  }
493  }
494 
495  {
496  const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
497  const int *dist_scale_factor = h->dist_scale_factor;
498  int ref_offset;
499 
500  if(FRAME_MBAFF && IS_INTERLACED(*mb_type)){
501  map_col_to_list0[0] = h->map_col_to_list0_field[h->mb_y&1][0];
502  map_col_to_list0[1] = h->map_col_to_list0_field[h->mb_y&1][1];
503  dist_scale_factor =h->dist_scale_factor_field[h->mb_y&1];
504  }
505  ref_offset = (h->ref_list[1][0].mbaff<<4) & (mb_type_col[0]>>3); //if(h->ref_list[1][0].mbaff && IS_INTERLACED(mb_type_col[0])) ref_offset=16 else 0
506 
507  if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
508  int y_shift = 2*!IS_INTERLACED(*mb_type);
509  assert(h->sps.direct_8x8_inference_flag);
510 
511  for(i8=0; i8<4; i8++){
512  const int x8 = i8&1;
513  const int y8 = i8>>1;
514  int ref0, scale;
515  const int16_t (*l1mv)[2]= l1mv0;
516 
517  if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
518  continue;
519  h->sub_mb_type[i8] = sub_mb_type;
520 
521  fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
522  if(IS_INTRA(mb_type_col[y8])){
523  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
524  fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
525  fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
526  continue;
527  }
528 
529  ref0 = l1ref0[x8 + y8*b8_stride];
530  if(ref0 >= 0)
531  ref0 = map_col_to_list0[0][ref0 + ref_offset];
532  else{
533  ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride] + ref_offset];
534  l1mv= l1mv1;
535  }
536  scale = dist_scale_factor[ref0];
537  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
538 
539  {
540  const int16_t *mv_col = l1mv[x8*3 + y8*b4_stride];
541  int my_col = (mv_col[1]<<y_shift)/2;
542  int mx = (scale * mv_col[0] + 128) >> 8;
543  int my = (scale * my_col + 128) >> 8;
544  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
545  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
546  }
547  }
548  return;
549  }
550 
551  /* one-to-one mv scaling */
552 
553  if(IS_16X16(*mb_type)){
554  int ref, mv0, mv1;
555 
556  fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
557  if(IS_INTRA(mb_type_col[0])){
558  ref=mv0=mv1=0;
559  }else{
560  const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset]
561  : map_col_to_list0[1][l1ref1[0] + ref_offset];
562  const int scale = dist_scale_factor[ref0];
563  const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
564  int mv_l0[2];
565  mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
566  mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
567  ref= ref0;
568  mv0= pack16to32(mv_l0[0],mv_l0[1]);
569  mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
570  }
571  fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
572  fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
573  fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
574  }else{
575  for(i8=0; i8<4; i8++){
576  const int x8 = i8&1;
577  const int y8 = i8>>1;
578  int ref0, scale;
579  const int16_t (*l1mv)[2]= l1mv0;
580 
581  if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
582  continue;
583  h->sub_mb_type[i8] = sub_mb_type;
584  fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
585  if(IS_INTRA(mb_type_col[0])){
586  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
587  fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
588  fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
589  continue;
590  }
591 
592  assert(b8_stride == 2);
593  ref0 = l1ref0[i8];
594  if(ref0 >= 0)
595  ref0 = map_col_to_list0[0][ref0 + ref_offset];
596  else{
597  ref0 = map_col_to_list0[1][l1ref1[i8] + ref_offset];
598  l1mv= l1mv1;
599  }
600  scale = dist_scale_factor[ref0];
601 
602  fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
603  if(IS_SUB_8X8(sub_mb_type)){
604  const int16_t *mv_col = l1mv[x8*3 + y8*3*b4_stride];
605  int mx = (scale * mv_col[0] + 128) >> 8;
606  int my = (scale * mv_col[1] + 128) >> 8;
607  fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
608  fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
609  }else
610  for(i4=0; i4<4; i4++){
611  const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*b4_stride];
612  int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
613  mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
614  mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
615  AV_WN32A(h->mv_cache[1][scan8[i8*4+i4]],
616  pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]));
617  }
618  }
619  }
620  }
621 }
622 
623 void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type){
624  if(h->direct_spatial_mv_pred){
625  pred_spatial_direct_motion(h, mb_type);
626  }else{
627  pred_temp_direct_motion(h, mb_type);
628  }
629 }
#define PICT_BOTTOM_FIELD
Definition: mpegvideo.h:628
#define HAVE_THREADS
Definition: config.h:236
#define B
Definition: dsputil.c:1897
void ff_h264_direct_dist_scale_factor(H264Context *const h)
Definition: h264_direct.c:52
int mb_y
Definition: h264.h:454
int field_picture
whether or not the picture was encoded in separate fields
Definition: mpegvideo.h:140
int mb_height
Definition: h264.h:458
mpegvideo header.
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264.h:327
H264Context.
Definition: h264.h:252
int picture_structure
Definition: h264.h:376
#define AV_WN32A(p, v)
Definition: intreadwrite.h:458
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264.h:369
static av_always_inline uint32_t pack16to32(int a, int b)
Definition: h264.h:794
void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type)
Definition: h264_direct.c:623
#define AV_RN32A(p)
Definition: intreadwrite.h:446
int ref_poc[2][2][32]
h264 POCs of the frames used as reference (FIXME need per slice)
Definition: mpegvideo.h:137
int long_ref
1->long term reference 0->short term reference
Definition: mpegvideo.h:136
uint8_t
int ref_count[2][2]
number of entries in ref_poc (FIXME need per slice)
Definition: mpegvideo.h:138
#define PICT_FRAME
Definition: mpegvideo.h:629
#define b
Definition: input.c:52
Picture ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264.h:405
int mb_xy
Definition: h264.h:461
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264.h:402
int mb_x
Definition: h264.h:454
static void pred_temp_direct_motion(H264Context *const h, int *mb_type)
Definition: h264_direct.c:412
#define IS_INTERLACED(a)
Definition: mpegvideo.h:113
H.264 / AVC / MPEG4 part10 codec.
void ff_h264_direct_ref_list_init(H264Context *const h)
Definition: h264_direct.c:104
Multithreading support functions.
static const uint16_t mask[17]
Definition: lzw.c:38
int reference
is this picture used as reference The values for this are the same as the MpegEncContext.picture_structure variable, that is 1->top field, 2->bottom field, 3->frame/both fields.
Definition: avcodec.h:1132
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2752
int direct_spatial_mv_pred
Definition: h264.h:391
#define IS_INTRA(a)
Definition: mpegvideo.h:109
int map_col_to_list0[2][16+32]
Definition: h264.h:396
#define MB_TYPE_16x16_OR_INTRA
int col_parity
Definition: h264.h:392
static const uint8_t scan8[16 *3+3]
Definition: h264.h:778
useful rectangle filling function
#define IS_8X8(a)
Definition: mpegvideo.h:119
#define FRAME_MBAFF
Definition: h264.h:62
int x264_build
Definition: h264.h:452
int poc
h264 frame POC
Definition: mpegvideo.h:131
Picture.
Definition: mpegvideo.h:95
SPS sps
current sps
Definition: h264.h:354
static void fill_rectangle(SDL_Surface *screen, int x, int y, int w, int h, int color)
Definition: avplay.c:401
int dist_scale_factor[32]
Definition: h264.h:394
int frame_num
h264 frame_num (raw frame_num from slice header)
Definition: mpegvideo.h:132
int direct_8x8_inference_flag
Definition: h264.h:163
static int get_scale_factor(H264Context *const h, int poc, int poc1, int i)
Definition: h264_direct.c:40
#define PART_NOT_AVAILABLE
Definition: h264.h:330
static const int8_t mv[256][2]
Definition: 4xm.c:73
uint32_t * mb_type
macroblock type table mb_type_base + mb_width + 2
Definition: avcodec.h:1180
static void pred_spatial_direct_motion(H264Context *const h, int *mb_type)
Definition: h264_direct.c:162
int mbaff
h264 1 -> MBAFF frame 0-> not MBAFF
Definition: mpegvideo.h:139
int mb_stride
Definition: h264.h:459
AVCodecContext * avctx
Definition: h264.h:253
external API header
void ff_thread_await_progress(AVFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
Definition: pthread.c:684
int16_t(*[2] motion_val)[2]
motion vector table
Definition: avcodec.h:1172
#define mid_pred
Definition: mathops.h:94
int8_t * ref_index[2]
motion reference frame index the order in which these are stored can depend on the codec...
Definition: avcodec.h:1195
int field_poc[2]
h264 top/bottom POC
Definition: mpegvideo.h:130
static const uint16_t scale[4]
Definition: vf_drawbox.c:36
int dist_scale_factor_field[2][32]
Definition: h264.h:395
static void await_reference_mb_row(H264Context *const h, Picture *ref, int mb_y)
Definition: h264_direct.c:145
common internal api header.
Bi-dir predicted.
Definition: avutil.h:247
uint16_t sub_mb_type[4]
Definition: h264.h:379
DSP utils.
int col_fieldoff
Definition: h264.h:393
Picture * cur_pic_ptr
Definition: h264.h:263
#define IS_SUB_8X8(a)
Definition: mpegvideo.h:120
#define IS_DIRECT(a)
Definition: mpegvideo.h:114
#define AV_ZERO32(d)
Definition: intreadwrite.h:534
#define IS_16X16(a)
Definition: mpegvideo.h:116
uint32_t * mb2b_xy
Definition: h264.h:343
struct AVFrame f
Definition: mpegvideo.h:96
Definition: vf_drawbox.c:36
int map_col_to_list0_field[2][2][16+32]
Definition: h264.h:397
int b_stride
Definition: h264.h:345
static void fill_colmap(H264Context *h, int map[2][16+32], int list, int field, int colfield, int mbafi)
Definition: h264_direct.c:71
int8_t ref_cache[2][5 *8]
Definition: h264.h:328
if(!(ptr_align%ac->ptr_align)&&samples_align >=aligned_len)